

Mathematical Opportunities n Student Thinking

What does it Mean to Build on Student Mathematical Thinking?

Blake E. Peterson & Keith R. Leatham, Brigham Young University Laura R. Van Zoest, Western Michigan University Shari L. Stockero, Michigan Technological University Mary A. Ochieng, Western Michigan University Leveraging MOSTs: Developing a Theory of Productive Use of Student Mathematical Thinking

- 4-year research project funded by the USA National Science Foundation (DRL-1220141, DRL-1220357, DRL-1220148)
- Co-Principal Investigators:
 - Keith R. Leatham, Brigham Young University
 - Blake L. Peterson, Brigham Young University
 - Shari L. Stockero, Michigan Technological University
 - Laura R. Van Zoest, Western Michigan University

Incorporating Student Mathematical Thinking

- The mathematics education community encourages instruction that meaningfully incorporates students' mathematical thinking (e.g., NCTM, 2000, 2007)
- The benefits of such incorporation have been documented. (e.g., Fennema, et al., 1996; Stein & Lane, 1996)

Incorporating Student Mathematical Thinking

- The mathematics education community encourages instruction that meaningfully **incorporates** students' mathematical thinking (e.g., NCTM, 2000, 2007)
- The benefits of such incorporation have been documented. (e.g., Fennema, et al., 1996; Stein & Lane, 1996)

What does the literature say about incorporating student mathematical thinking?

• using student mathematical thinking (e.g., Franke & Kazemi, 2001; Peterson & Leatham, 2009)

Mathematica Opportunities in Student

Thinkinc

- building on student mathematical thinking (e.g., Hill, Ball, & Schilling, 2008; Van Zoest & Stockero, 2012)
- attending to the mathematical thinking (e.g, Feiman-Nemser & Remillard, 1996; Lampert et al., 2013)
- being "responsive to students and... their understanding" (Remillard, 1999, p. 331)
- build on students' prior or existing knowledge (Breyfogle & Herbel-Eisenmann, 2005; Carpenter et al., 1989).
- build toward an important mathematical idea (Stein, Engle, Smith, and Hughes, 2008)

Ways Teachers Incorporate Student Mathematical Thinking

- Attend to
- Pursue
- Use
- Build on
- Be responsive to

Ways Teachers Incorporate Student Mathematical Thinking

- Attend to
- Pursue
- Use
- Build on
- Be responsive to

- Assess whether it is ok to move on
- Elicit student ideas
- Validate student ideas
- Have other students consider the thinking
- Engage in a discussion of the thinking

- In the context of classroom discourse
- Teacher doing something purposefully with student thinking
- Variations in the extent to which the teacher has to attend to what the student has said
 - Elicit
 - Interpret
 - Build

- In the context of classroom discourse
- Teacher doing something purposefully with student thinking
- Variations in the extent to which the teacher has to attend to what the student has said
 - Elicit (e.g., merely have students share)
 - Interpret
 - Build

- In the context of classroom discourse
- Teacher doing something purposefully with student thinking
- Variations in the extent to which the teacher has to attend to what the student has said
 - Elicit (e.g., merely have students share)
 - Interpret (e.g., formative assessment)
 - Build

- In the context of classroom discourse
- Teacher doing something purposefully with student thinking
- Variations in the extent to which the teacher has to attend to what the student has said
 - Elicit (e.g., merely have students share)
 - Interpret (e.g., formative assessment)
 - Build (e.g., engage in a discussion of the thinking)

Discussion

Mathematical Opportunities n Student Thinking

(a) Discuss the range of specific ways that a teacher might incorporate student thinking into instruction.

(b) For each of these ways,

- What does it accomplish?
- What is its value relative to its purpose?
- What is its value relative to the other ways?

(a) Discuss the range of specific ways that a teacher might incorporate student thinking into instruction.

Mathematica

Opportunities in Student Thinking

(b) For each of these ways,

- What does it accomplish?
- What is its value relative to its purpose?
- What is its value relative to the other ways?

Uses of Student Thinking

Mathematica

Opportunities in Student Thinking

Use Fill in the blank IRE Provoke/perturb student thinking Follow incorrect student thinking Have the class analyze student thinking Compare two ideas

Uses of Student Thinking

Use	Purpose	
Fill in the blank		
IRE		
Provoke/perturb student thinking	Shift mathematical authority? Get to know your students	
Follow incorrect student thinking	Mathematical practices	
Have the class analyze student thinking	Shift mathematical authority	
Compare two ideas	Shift mathematical authority Understanding mathematics Valuing all ideas Knowing there are multiple ways Mathematical practices	
Exit slips	Formative assessment	
Eliciting	Get to know your students	
	Honor student thinking	

Uses of Student Thinking

Use	Purpose	Value (high, medium, low)
Fill in the blank	Cover curriculum, state tests, involve students	low
IRE	Cover curriculum, state tests, involve students	low
Provoke/perturb student thinking	Shift mathematical authority? Get to know your students	high
Follow incorrect student thinking	Mathematical practices	high
Have the class analyze student thinking	Shift mathematical authority	high
Compare two ideas	Shift mathematical authority Understanding mathematics Valuing all ideas Knowing there are multiple ways Mathematical practices	
Exit slips	Formative assessment	
Eliciting	Get to know your students	
	Honor student thinking	

Conclusions

- Productiveness—depends on purpose and what one values
- It is both possible and valuable to talk about these ideas and come up with a shared vocabulary

Mathematical Opportunities in Student Thinking

Mathematical Opportunities in Student Thinking

Mathematical Opportunities in Student Thinking

Mathematical Opportunities in Student Thinking

Contact Information

- LeveragingMOSTs.org
- Keith Leatham <u>kleatham@mathed.byu.edu</u>
- Blake Peterson <u>blake@byu.edu</u>
- Shari Stockero <u>stockero@mtu.edu</u>
- Laura Van Zoest laura.vanzoest@wmich.edu